Proposition de stages, thèses et post-docs

Laboratoire de Physicochimie des Processus de Combustion et de l'Atmosphère
PC2A - UMR 8522 CNRS/Lille1
Université Lille 1 Sciences et Technologies
Cité scientifique, Bâtiment C11/C5
59655 Villeneuve d'Ascq Cedex, France

Le Laboratoire de Physicochimie des Processus de Combustion et de l'Atmosphère de l'Université Lille1 Sciences et Technologies cherche des physico-chimistes, chimistes ou physiciens de formation, pour préparer un stage de recherche Master (Année universitaire 2020-2021), une thèse de doctorat (à partir d'Octobre 2020), ou un Post-Doc dans le domaine de l'énergétique et de l'environnement.

Les sujets de recherche proposés concernent les domaines de la combustion, de la sûreté nucléaire et de l'environnement. Ils s'inscrivent dans des axes de recherche soutenus par le Ministère de l'Enseignement Supérieur et de la Recherche, le CNRS-INSIS, l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN) et le Contrat de Projet Etat-Région Hauts de France.

Les candidatures, comportant un CV et une lettre de motivation, doivent être soumises auprès des chercheurs responsables des sujets proposés.

Master 2

Towards low-pollutant combustion technologies: Experimental studies of ozone-assisted combustion

The future of combustion engines is dependent on significant reduction in pollutant emissions, as well as improvement in fuel efficiency and substantial reduction in fuel consumption. Controlled initiation of the combustion is a crucial step towards these goals, with wide ranges of application including piston engines, constant volume combustors, gas turbines and aeronautic engines. In all these cases, reproducible initiation of the combustion phase is sought, multipoint or volumetric ignition being preferred. However, fuel ignition is highly dependent on the chemical kinetics associated with Low Temperature Combustion (LTC).

The chemical mechanisms relevant to LTC include the formation of unstable peroxides, the structure of which reflects the initial fuel. The reactivity of a fuel in this temperature regime is therefore highly constrained by its structure. This is also true for next generation biofuels, whose oxidation pathways can be strongly different from “traditional” fossil fuels. To facilitate ignition of such fuels, ozone-seeding has been suggested as a practical and easy solution.

To investigate the potential of this technology, a burner dedicated to the study of stabilized cool flames has been designed and validated. The potential to perform detailed kinetic studies through a number of optical and analytical diagnostics has been demonstrated, including Planar Laser Induced Fluorescence (PLIF), chemiluminescence and gas chromatographic techniques. These data can be used to validate kinetic models of the LTC chemistry under these rarely investigated conditions.

As part of this work, the panel of diagnostics associated to the burner will be extended to flow-field characterization optical techniques, as well as techniques dedicated to the detection of unstable species, such as VUV photoionization mass spectrometry.

Laboratory: PC2A

Supervisor: VANHOVE Guillaume

Tél : 03.20.43.44.85, E-mail: guillaume.vanhove@univ-lille.fr

Co-supervisor:                PILLIER Laure

CaPPA Work Package:     WP-1 From gas phase to aerosols 

Sedimentation and Resuspension of Allergenic Birch Pollen Grains

Birch Pollen Grain (BPG) is one of the most abundant tree pollen in Europe and a major cause of allergenic rhinitis and asthma attacks. Atmospheric pollution aggravates symptoms of allergy and asthma but the biological mechanisms are not understood. Each BPG that we breathe during birch pollination (march/april) has its own atmospheric journey and has suffered its own exposure to atmospheric air pollutants.

This internship aims at the study of a particular case of journey for BPGs: what happens to a pollen grain after sedimentation?

A pollen grain after sedimentation could have a longer exposure to air pollutants and suffer from mechanical damages. However, little is known about both sedimentation and resuspension.

This experimental work, performed in laboratory and on the field, will imply the use of gas chromatograh coupled to mass spectrometry, microscopy techniques, particles counters and pollen samplers.

 

Key words: Allergy, Anthropocene, Pollen Transport, Atmospheric Chemistry

Laboratory: PC2A

Supervisor: VISEZ, Nicolas

Tél 0664842324, E-mail : Nicolas.visez@univ-lille.fr

Collaborator:                   CHOËL Marie                 

CaPPA Work Package:    WP2 

 

Thèses

Identification de seuils universels de concentrations de composés aromatiques à l’origine de la formations des premières particules de suies dans les flammes

La formation des particules fines dans les flammes constitue un problème majeur dans les procédés utilisant la combustion pour la conversion de l’énergie. L’identification des facteurs déterminants la genèse de ces premières particules est une question fondamentale qui pose de nombreuses difficultés expérimentales et théoriques. Très récemment, en s’appuyant sur des études expérimentales utilisant l’hydrogène moléculaire dans les systèmes réactifs initiaux, il a été mis en évidence la possibilité d’existence de « concentrations seuils universels » de composés aromatiques à l’origine de l’apparition des particules fines. Ces études menées sur des flammes de méthane dans des conditions particulières, montrent en effet l’invariabilité de ces seuils vis à vis de la pression, le taux de dilution et de la manière dont l’hydrogène est introduit dans la flamme (ajout ou substitution) de méthane. Ces observations, s’elles venaient à être confirmées, peuvent avoir des retombées pratiques majeures en termes d’applications industrielles notamment dans le secteur de
transport. L’identification d’un « seuil universel » signifierait en effet la possibilité d’identifier les conditions optimales permettant son évitement. Cependant, ces hypothèses nécessitent une validation expérimentale bien plus large. En plus de l’effet de la pression, la dilution et de la composition initiale, le contrôle de la nature du fuel sur ces supposés seuils universels de concentration de composés aromatiques est absolument nécessaire. Ce projet propose donc d’étudier l’impact de ce paramètre en examinant l’effet des structures de différentes familles chimiques qui sont les alcanes (linéaires et ramifiés), les cyclo-alcanes, les alcynes, les alcènes et les structures aromatiques. Ce travail expérimental très conséquent s’appuiera sur des dispositifs optiques et analytiques performants et hautement sensibles pour l’analyse de la phase gazeuse et
particulaire dans des flammes particulières ces différents composés.

Programmes de recherche en lien avec le sujet : Labex CAPPA

Responsables et coordonnées :

Abderrahman El Bakali  abderrahman.elbakali@unv-lille.fr          Tél : 03 20 43 48 04
Xavier Mercier               xavier.mercier@univ-lille.fr                     Tél : 03 20 43 48 04

 

Combustion de nouveaux biocarburants : étude du mécanisme de formation des Hydrocarbures Aromatiques Polycycliques Oxygénés (HAPOs) et des petites particules de suie (<10 nm)

Les biocarburants cellulosiques (BCC) contiennent dans leur structure un ou plusieurs atomes d’oxygène, et sont considérés comme une source prometteuse d'énergie alternative. Un de leurs intérêts est que leur combustion produit moins de particules de suie de grande taille (>10nm) comparé aux carburants conventionnels. Pour ces raisons, l’utilisation des BCC est en constante augmentation ces dernières années. Cependant, leur combustion peut générer un grand nombre de particules de suie de petite taille (<10 nm). Celles-ci contiennent également une proportion importante d’Hydrocarbures Aromatiques Polycycliques Oxygénés (HAPOs) rendant potentiellement les suies plus nocives. Comprendre et maitriser les mécanismes de formation des HAPOs, ainsi que leur responsabilité dans la formation des petites particules de suie est l’une des conditions préalables indispensables à l’utilisation des BCC comme énergie alternative, propre et sûre. Dans ce contexte, le projet de thèse proposé a pour objectif de contribuer à une meilleure compréhension des phénomènes physico-chimiques impliqués. Sa réalisation s’appuiera sur les compétences du laboratoire PC2A qui sont reconnues au niveau international dans le domaine. Le laboratoire PC2A dispose de bancs expérimentaux de haute technicité permettant de réaliser les travaux envisagés dans le cadre de ce projet. Ainsi, l’équipe a récemment fait l’acquisition de deux nouveaux dispositifs (notamment dans le cadre du CPER CLIMIBIO) qui seront mis en œuvre dans cette étude :

- un dispositif GC (chromatographie en phase gazeuse) permettant l’analyse quantitative d’espèces chimiques d’intérêt, équipé d’un système spécial dédié au piégeage des HAPs/HAPOs ;

- un dispositif SMPS (granulomètre de type Scanning mobility particle sizer) de toute nouvelle génération permettant la caractérisation de particules de l’ordre du nanomètre (1nm).

La haute sensibilité de ces dispositifs expérimentaux sera mise à profit pour l’analyse qualitative et quantitative des espèces chimiques clés impliquées dans la formation des particules de suie dans des flammes de BCC. L’obtention de cette base de données expérimentales, couplée avec le développement d’un modèle chimique détaillé, permettra une analyse fine de la cinétique de combustion des BCC et de formation des HAPOs/suie.

Programmes de recherche en lien avec le sujet : CPER Climibio / Labex CAPPA

 

Mots clés :   Biofuels, combustion, HAPs oxygénés, nucléation de suies, nanoparticules de suies (<10 nm)

 

Responsables et coordonnées :

Luc-Sy Tran                           luc-sy.tran@univ-lille.fr                      Tel: 03 20 43 49 78

Laurent Gasnot                      laurent.gasnot@univ-lille.fr                       03 20 43  48 02

 

Financement envisagé :  Bourse Région Hauts-de-France/ADEME/Labex CaPPA

 

Modelling studies of the chlorine atmospheric chemistry

The importance of gas-phase halogenated compounds (chlorine, bromine, and iodine) in the atmosphere has been established since the 1970s with the discovery of ozone hole over the Antarctic. These gases generate radicals with a broad range of applications for tropospheric and stratospheric chemistry: ozone budget, atmospheric concentrations (OH, NOx, volatile organic compounds), aerosol formation in the marine boundary layer, halogen interactions, climate change.

 

Numerous studies have been already performed with halogen chemistry using global models. Most of them have focused on bromine and iodine, which are more active than chlorine because of the higher chemical stability of HCl by comparison to other HX acids (X = Br, I). In the chemistry-transport models, there are limited numbers of reactions especially dealing with the organic halogenated compounds. To date, the atmospheric gas phase reactivity and gas–aerosol interactions data sets remain incomplete and poorly understood. Quantum chemistry tools will be employed to gain a more profound insight into the observed reactivity trends and predict thermokinetic parameters for the experimental data that are difficult or impossible to obtain. A recent work performed by our group has demonstrated that the addition of the iodinated organic scheme to the atmospheric model strongly influences its chemical speciation (Fortin et al, Atm. Env., 2019, 214, 116838).

 

The objectives of the thesis are the following: (i) update the chlorine reaction mechanism using an exhaustive literature review, (ii) integrate the new reaction mechanism in the atmospheric models, (iii) perform kinetic analysis with a 0D model to establish the major reaction pathways and to identify the lack of data, (iv) complete the status of knowledge by molecular modelling (v) evaluate with the chemistry-transport model MOCAGE the impact of the updated mechanism on stratospheric and tropospheric air composition at the global scale, in particular on the ozone layer..

 

The new obtained data will help and orient the risk management community and government health and policy makers to better protect and serve the public interest.

 

Research program linked to the subject : Labex CaPPA

 

Keywords : Chlorine, atmosphere, molecular simulations, 0D/3D modelling

 

Advisors :

PC2A

                        Florent Louis                 florent.louis@univ-lille.fr             Tel : 03 20 33 63 32

                        Valérie Fèvre-Nollet       valerie.fevre-nollet@univ-lille.fr   Tel : 03 20 43 67 22

CNRM (Météo-France/CNRS)

Virginie Marécal            virginie.marecal@meteo.fr         Tel : 05 61 07 93 61

 

Funding : Labex CaPPA with MétéoFrance

 

FILLED, POURVU, Atmospheric Chemistry of Silicon Compounds and their Role in Indoor Air Quality

This position is now filled

Indoor air quality and chemistry has been a subject of increasing interest in recent years. Indeed, we spend more than 80% of our time indoors, but the chemistry and health impacts of indoor air have attracted far less interest than that of outdoor air. Trace gas species are generally much higher indoors than outdoors, and this can be further enhanced in low energy buildings, where air exchange is reduced to a minimum in order to minimize energy consumption for heating (mostly in France) or cooling (mostly in Australia).

Volatile silicon compounds are present in a wide range of household items, particularly in personal care products such as cosmetics and deodorants. Of particular interest are the cyclic polysiloxanes, which are emerging persistent chemicals of concern. The atmospheric chemistry of silicon compounds remains relatively unstudied. However, in indoor environments volatile siloxanes can be present at significant concentrations. For example, it was recently shown that D4 (cyclic polysiloxane made of 4 Si- and 4 O-atoms) was the most abundant volatile compound in a university classroom. Even in outdoor environments silicon compounds can be found at high levels.

To understand potential health effects of indoor air we need to know the rate at which siloxanes are removed by reaction with free radical oxidants, which will control their airborne lifetimes. Moreover, we need to understand the chemical products that these compounds are ultimately transformed into, so that we can assess their impacts on human health and the environment.

This project is focused on verifying and then expanding our understanding of this chemistry, through a suite of combined experiments (in France) and theoretical simulations (in Australia) in order to characterize the rate at which volatile silicon compounds react with the OH radical, and identify the products that result from subsequent oxidation of the products.

The candidate will mostly carry out experiments in Lille using two different laser-based experimental set-ups: a laser photolysis system coupled to a detection by FAGE (fluorescence assay by gas expansion) and another laser photolysis system coupled to a detection by LIF (laser induced fluorescence) or cw-CRDS (cavity ring down spectroscopy). The PhD project also includes extended stays at the University Melbourne to get formation in theoretical chemistry and participate in the quantum chemical calculations. A counterpart PhD student at the University Melbourne will mostly do quantum chemical calculations and will participate in experiments during extended stays in Lille.

 

Programmes de recherche en lien avec le sujet :  PRC CNRS – University Melbourne

Mots clés : Indoor Air Quality, reaction kinetic, laser spectroscopy

Responsables et coordonnées :

PC2A                     Christa Fittschen                christa.fittschen@univ-lille.fr              Tel: 03 20 33 72 66

                                Coralie Schoemaecker      Coralie.schoemaecker@univ-lille.fr   Tel: 03 20 33 72 66

U Melbourne        Gabriel da Silva                   gdasilva@unimelb.eduau

Financement envisage : PhD grant secured in the frame of the PRC CNRS-Melbourne

 

FILLED, POURVU, Pollution sensors and building ventilation strategies

This position is now filled

Since 2014 PC2A laboratory has been investigating the use of miniature gas and particle sensors to characterize the pollution levels inside buildings as well as the individual exposure of people to air pollutants. Recent results also pointed out the potential of miniature sensors to understand the behavior of the buildings themselves and of the people inside the buildings.

 

To further delve into these aspects, PC2A laboratory, in partnership with the Building Physics group at the University of Gent, is looking for a motivated student willing to undertake a PhD at the intersection of two fields with strong scientific, social and economic impacts : energy and public health. We propose to investigate, using the miniature air quality sensor systems developed at ULille, the mechanisms responsible for the outdoor to indoor transfer of pollutants, and the respective importance of particulate pollution from indoor and from outdoor origin. We will eventually be able to integrate the particles sensors into demand controlled ventilation systems, in order to renew the air in buildings while simultaneously considering the energy preservation objective prescribed for new buildings and ensuring a healthy indoor air for the occupants. The project therefore joins the expertise in atmospheric chemistry and physics and in individual exposure of the partners in ULille, with the expertise in building physics and ventilation of the UGent partner. The project relies on academic research that can be in a near future transferred to the economic world.

Due to the multidisciplinary nature of the envisioned project, candidates from various background may apply: atmospheric chemistry and physics, analytical chemistry, building science, architecture, public health…

 

Keywords: air quality, miniature sensors, building physics, ventilation schemes

 

Contacts :        Benjamin Hanoune           Benjamin.hanoune@univ-lille.fr   (PC2A, Lille)

                        Jelle Laverge                    Jelle.laverge@ugent.be             (Gent)

                               

 

Funding : I-SITE funding (not secured yet, main criterium is the candidate) : http://www.isite-ulne.fr/index.php/fr/app/co-tutelles-de-theses-2020-universite-de-gand/

Deadline for application: April 29, 2020.

 

Post-docs

Development of reliable kinetic models of OPAHs/PAHs for the combustion of oxygenated biofuels

Subject description:

Most currently proposed biofuels contain in their chemical structure one or more oxygen atoms, e.g. alcohols, esters or ethers (called “oxygenated biofuels”). They are considered as promising sources of renewable energy production, which reduces CO2 emissions and fossil fuel dependence. The use of biofuels is increasing, especially those produced from non-edible cellulosic biomass. Due to the presence of oxygen atoms in the chemical structure of biofuels, soot particles generated from the combustion of oxygenated biofuels contain a high proportion of oxygenates, including oxygenated polycyclic aromatic hydrocarbons (OPAHs) recognized as particularly toxic, thus making soot particles more of a health hazard. The understandings of the formation mechanisms of OPAHs, the relationship between OPAHs and PAHs, and their roles in the soot formation process during biofuel combustion are thus crucial, which help promoting cleaner biofuel combustion technologies. The proposed postdoc project aims to develop reliable kinetic models of OPAHs/PAHs for the combustion of oxygenated biofuels. These models will be tested against experimental data in the literature and those currently being measured at PC2A laboratory. The work includes the following tasks:

-Bibliographic study on OPAHs, associated PAHs, and soot in the combustion of oxygenated biofuels.

-Investigation of reaction pathways of OPAHs and associated PAHs.

-Calculation of missing kinetic and thermodynamic data.

-Validation of the proposed kinetic models against experimental data.

-Analysis and processing of results, and writing of articles.

 

Candidate profile:

Applicants must have a Ph.D with a strong component in combustion kinetic model development. Experience and aptitude for the modelling approach of PAHs and OPAHs are essential. Skills in theoretical calculations of kinetic and thermodynamic data for combustion conditions are necessary. Skill in soot modelling is an advantage. The candidate will have to justify his/her abilities, particularly in terms of thoroughness and autonomy.

Financial support: I-SITE ULNE (http://www.isite-ulne.fr/index.php/en/i-site-a-label-of-university-of-ex...)

Planned start: November 2020

Duration: 18 months

Salary: ~2500 euros gross/month

 

How to apply:

Email to Dr. Luc-Sy TRAN (luc-sy.tran@univ-lille.fr):

- CV

- Cover letter

- References

 

Deadline:  15 September 2020